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ABSTRACT: The p lane  problem of homogeneous  vortex flows of an 

incompress ib le  invisc id  fluid around a contour is considered.  A 

method is developed for contours hav~ng a center  or an axis of sym-  

metry  for ca l cu l a t i ng  the l i f t ing  force ac t ing  on the contour which 

reduces the problem of de te rmin ing  the l i f t ing force to an ordinary 

problem of a po ten t i a l  flow of a fluid around the g iven  contour, 

A fixed contour is p laced  in a p lane,  inf in i te ,  homogeneous,  

vortex flow of an incompress ible ,  invise id  fluid (Fig. 1). As shown 

by the solut ion for the problem of a c i r c l e  [1], in  this case,  unl ike  

po ten t ia l  flows around a contour, a l i f t ing  force proport ional  to the 
vortex is set up. 

The problem of de te rmin ing  l i f t ing forces is solved below for a 
ce r ta in  class of contours. 

In a Car tes ian coordinate  system, the ve loc i ty  of a fluid at  
inf ini ty  is 

u - ~ , , o ~  i-~og, z . . . .  0 when r - - . c o ( r =  ~ x  2 i- ~') . ( l )  

Here u, v are  project ions of the ve loc i ty  vector  on the x, y axes,  

respect ively;  u~o is the v e l o c i t y  at  i n f i n i t y a s  x o  ~ ,  y = 0. Accord-  

ing to the He lmhol tz  theorem [2], in this case,  the vor t ic i ty  wi l l  be 
constant  over  the ent i re  flow region and equal  to - w .  

Thus, flow around a contour is described by the equations with 
boundary condit ions (1) at inf in i ty  and the condi t ion on the contour 

O v d v 0 u ,9 v " 

Oz Oy - - -  ~ '  oz  + -Oy- = (1 (2) 

with boundary condit ions (1) at inf ini ty  and the condi t ion on the 

contour 

,% - u c o s ( n ,  x) ~ r s i n  (n, z) :" I). (3) 

Here n is the d i rec t ion  o f  the outward normal  from the co ; tour  

and w n is the normal  component  of t h e  ve loc i ty  along the contour. 

In order to c a l c u l a t e  the forces ac t ing  on the contour, i t  is suf- 
f ic ient  to know the asympto t ic  behavior  of the ve loc i ty  and the pres-  

sure in the v i c in i t y  of an in f in i t e ly  remote  point.  

We shal l  seek the solution of system (2) in the form 

n =, 1' [ -  ,~-! o!,,, r - "  | ' - } -  r~.  ( 4 )  

In this case,  U and V satisfy the equations 

iW OU 3V OH 
~ - - o ~  - = ~  3-2 + 5"~!)- : :o. 

and the boundary condit ions 

U c o s ( n ,  x) + V s i n ( n ,  x) = 0 on L: 

I: = %0" I" = I) at  or (6) 

The fimetions u~, v 1 satisfy the same equations (5) and the 

boundary condit ions 

I l l r ( ) S  ( l l ,  ,17) : I' 1 S i l l  ( ] l .  X )  : - -  I~(s COS (l~,  .2") OIl  L ;  

u~ = o, r~ = O at c r  (7) 

After so lv ing  (fl) with the corresponding boundary condit ions (6) 

and (7) and sub~'tituting the  solutions in (4), we obtain the solution of 

system (2) with condit ions (1) and (.~). 
System (5) with condi t ions (6) describes the po ten t ia l  of a uniform 

flow around the g iven  contour with ve loc i ty  u.o at inf in i ty ,  in c o m -  
p lex  var iables  the to ta l  conjugate  ve loc i ty  of such a flow in the v i c i n -  

i ty  of an in f in i t e ly  remote  point  without c i rcu la t ion  is represented by 

the expansion 

"-" = "-o~ -i- A ~ /  ,-: -i- A:~ / :3 .!_ . . . , 

( A ~ = A ~ / - !  i A k " )  ( k =  2 , 3 , 4  . . . .  ), (8) 

System (5) with condit ions (7) also describes a ce r t a in  po ten t ia l  
flow with zero ve loc i ty  at  inf ini ty .  The solut ion wi l l  b e  of the form 

u-:l == B 2 /  z~*-~- B 3 ]  z ~ [  �9 , , (Bl~ .... B~" !- i B m " ) ,  (9) 

The complex -con juga t e  ve loc i ty  of the to ta l  flow wi l l  be 

w 0 = u ' - i - ~ ~ =  %c + C - " / z ~  i C:~/z :~-[- . . . .  

(c~ ..... A~. ! ]3~). (10) 

H t 

Fig. 1 

Since wo : u0 -- iv0 and z = re t~~ we obtain the fol lowing expan-  
sion in the v ic in i ty  of an inf in i te ly  remote  point: 

C~* tq)s 2q?-] " C'2" sill '~ q~ 

C . ; s i n 2 q J - - C ~ " r o s 2 ~  [ I ) 
v - -  ra -t- O \~-g ,  . (11) 

The pressure is de te rmined  from the Euler equations.  In polar 

coordinates 

C~2po .2 ( 1 )  Op 2Ca'po s inag  ~ " - ~ - - !  cos2 ( :p r_3cosq ) ]+O -~- 
Or ~ - -  r ~ - -  

, 3C,"p(a O ( - ~ ) , ( 1 2 )  Op 6C2'p(~ [cos cp _cosS  (p] _t_ ~ [2 sin~ (p _ i i  _t- 
0q~ --  r 

In tegrat ing these equations with p ~ p0 at  inf ini ty ,  we obtain 

_L C2'2pa) " s C2"po) 

We also compute  vv r, where v r : cos~  + v s i n ~  is the rad ia l  

ve loc i ty ,  

vvr  = -7- L '~ 4 + O (- . ( 1 9  

The m o m e n t u m  equat ion for the region bounded by the g iven  

contour and a c i r c l e  of arbi trary radius R is of the form 
2 ~  2 ~  

f pvrvt ld~+ f p R s i n T e t P - I - F = O  (15) 
I) 0 

where F is the force ac t ing  on the contour in the di rect ion of the 
y axis,  that  is, the l i f t ing force. Substi tuting ( l a ) a n d  (1.1) here ,  

then in tegra t ing ,  we obtain 

F = 2 n C ~ ' p ~ .  (1 ~) 

It follows from the last re la t ionship  that  the l i f t ing  force does 

not depend on Ci" ,  or, consequently,  on A~" or ~ ' ,  that  is, on the 

imag ina ry  parts of the coeff ic ients  A~ and B~ in expansions (8) and 

(9) .  
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Thus, ca l cu la t ing  the l i f t ing force is reduced to de te rmin ing  the 

rea l  parts of coeff ic ients  A~ and l~. 

The quant i ty  A~ can  be found i f  we know the ordinary flow around 
a contour which is uniform at  inf ini ty .  In par t icular ,  i f  we know the 
conformal  mapping  of the exter ior  of a c i r c l e  of radius R onto the ex-  
ter ior  of the g iven  contour z = f(g) ,  then  

A2 = kktuoz __ l#B~%z " (17) 

Here k, k 1 are the coeff ic ients  of the  Laurent expansion of the 
function 

z "~" J (~) -~ k~ + ko + - ~  "l- ~ z  + . . . .  (18) 

As was pointed out previously,  the va lue  of B s' can  also be de-  

t e rmined  i f  we know the solut ion of system (5) with condi t iom (7). 

We shal l  show tha t  with proper cho ice  of the posit ion of the co-  
ordinate  system re la t ive  to the contour, or more precisely,  the posi-  
t ion of the x axis which corresponds to cho ice  of a ce r ta in  value  of 

the ve loc i ty  at  inf ini ty ,  we can  ensure that  the magni tude  of the 

coef f ic ien t  ~ '  vanish in expansion (9). Then the problem of de )  

t e r m i m n g  the l i f t ing  force is reduced to the thoroughly studied prob- 
l em  of a po ten t ia l  flow around a contour. 

Fig. 2 

Indeed, t ranslat ing the x axis the dis tance a is equivalent  to 
changing u~ by the amount  a~o and rep lac ing  the boundary condi -  

t ions (7) by 
u 1 COS (n, x) + v t sin (n, z) = 

-= - -  y~ cos (n, x) - -  aO cos (n, z). (19) 

Then,  u~ and v~ of (7) can be represented in the form of a sum 

l~l ~ UI* - -  Ul**, ~'I = 1~I* -~ / ' I ** '  

Where ur* and Vl ~ satisfy equations (5) and condit ions (7),' whi le  ut** 
and vf ~ satisfy the same equations and the fol lowing boundary con-  
ditions: 

ut** COS (n, x) - -  v t**  s i n  (n,  z) = 
.... o,r cos (n, x) on L,q** = t ) . r~**:-=u at  ~ .  (20) 

Consequently,  u~* and vt" const i tu te  a solution of (5)  and (q) in 
the "old coord ina tes , "  whi le  ur"'  and vt**, as can  be read i ly  seen, 
describe a flow which is a superposition of a homogeneous  flow of a 
fluid with ve loc i t i es  u = a;o, v = 0 and po ten t i a l  flow around the g iven 

contour of a fluid with the ve loc i ty  u - - aw at inf ini ty .  In other 
words, for the ve loc i ty  complex=conjuga te  to w~* = Ul':: t. iVx'.*, we 

can write 

~'** =- ,q** - -  ivt** = D.~l z'-' + O ~ l  ::~-k . . . , 

(D~ = D~' + i d a " ) ,  

where, according to (175, 

D 2 = kk tao  - -  k'-'R2ato. (21) 

Thus. D z, Dz', Dz" are proport ional  to the quant i ty  a. By 

proper cl ioice of a. we can  ach i eve  the equal i ty  1~' = D~'. Then ,  

in tile new coordinate  system, the real  Par t  O f the coef f ic ien t  ~z wi l l  
be equal  to zero and, consequent ly ,  C s' - Az', that  is,  in order to 

c a l c u l a t e  the l i f t ing force, i t  wi l l  be sufficient  to know the ordinary 

flow around the contour and substitute the value of the ve loc i ty  cor-  
responding to the chosen axis into (165 instead of u,o. 

lu this case,  it is e a s y t o  obta in  a second expression for the 
l i f t ing force.  The quant i ty  A z' [,q] is expressed by the area under 

the contour and the apparent  add i t iona l  mass corresponding to the 

d i rec t ion  of the ve loc i ty  a t  inf in i ty  

�9 l m 
A2 = ~ - ~ ( - - ~  + ,.%) uoo" (22) 

Here m is the apparent  addi t iona l  mass, S0 is the area under the 
contour. Then,  we shal l  have  for the l i f t ing force 

F = (m + pS0)o%o" (2~5 

It is necessary to emphas ize  again  that  the unknown u.~ in the 
last  relat ionship depends on a .  In the general  case,  a is de te rmined  

from the solution of problem (5).and (75. 
However, we can point out two classes of contours for which i t  is 

not diff icul t  to se lec t  the position of the x axis .  

tn the first p lace ,  these are contours which do not possess a x i a l  
symmetry,  being arranged so that  the ve loc i ty  of whirl ing flow at 

inf in i ty  is pa ra l l e l  to the axis of symmetry .  In this case,  the x axis 
should co inc ide  with the axis of symmetry .  We shal l  show this.  It 
follows from the boundary conditions (7) in this case tha t  the fol low- 

ing should be true at the conjugate  points of the region,  that  is, when 
z = r exp ( i i r  

, u l '  = - - u t " ,  v t '  = v l ' ,  " ('21) 

Since Ul = B~' cos 2q~ +r2Ba" sin 2q: -4- O .(-#']'1 \ 

B,' s in  2q~ - -  B," cos 2q~ ( r l~ )  (25) 
Vx = r z  + O , 

tl 2' should be eqt,al to zero m order to satisfy (24). 
In the second p lace ,  these are contours which possess symmetry  

re la t ive  to a point (cent ra l  symmetry) ,  in the case of such contours. 

we must have  the axis pass through the center  of symmet ry ,  in this 
case.  the boundary conditions f75 are such that  we should have 

However, on the other hand, 

~ l ( z ) = - ~  - - : ~  ~ . 

wx ( - -  z) = B2 B B4 (27) 
z~ :~ + z--T . . . . .  

It is c lear  from compar ing  (27) and (265 that  a l l  B k with even sub- 
scripts should be zero. Thus. in the ~lven case,  not only I32', but I~", 

ts equal  to zero. 

Now. we sJ~all present an example  of ca l cu l a t i on  of the l i f t ing 

force. An el l ipse with semiaxes  a, b (a > b) is p laced  m a uniformly 

whirl ing flow at an angle  of  a t t ack  a (Fig.  2). Since the  el l ipse pos- 
sesses cent ra l  symmetry ,  the x-axis  passes throucl- its center .  

The complex  potent ia l  r of the potent ia l  flow around the e l l ipse  
with ve loc i ty  u.o is of the form [2] 

�9 = ~-~__~ [(o,z - -  b 1/ 'z  "~ - -  c'q u + i (bz  - -  o, V ' z  "--z~- c'-j v l  e -~ i .  

t le re  

(u =- %0 COS6~, V ~ %o SiUtX; c ~ ~ o. 2 - -  b~'). 

Since in the v ic in i ty  of an inf in i te ly  distant  point 

C 2 
gz~  - ~ = z - -  ~ -  + . . . .  

in this same neighborh9od 

" a + b  i 
~ = e - i ~ t [ ( s - -  it~) Z "+ ~(bu--~ iav)-"~- .-}-...]. 

t l ence  

A2 ~- - -  ~/2 (a - -  b) (bu + iav)e -cd.  

On separat ing the r e a l  part ,  we obtain 

A," = u~oi(o, + b) I b c o s ~ - k ,  o,sin2a ] . 
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The lifting force is equal to 

F = z (a -]- b) [b eos2cz + a s i n ~ ]  . 

Setting a = b = R in the last expression, we have 

This coincides [1] with the known expression for the lifting force for a 
circle. 

If we set b = 0 ,  0-< a < - v / 2 ,  we have 

that is, the plate at an angle of attack has a lifting force; this force 
reaches a maximum at a = v/2  when the plate is perpendicnIar to the 
flow. This force is of the same origin as the suction force in the or- 
dinary case of a profile with sharp leading and trailing edges. 

REFERENCES 

1. H. Lamb, Hydrodynamics [Russian translation], ONTI, 1947, 
2. I .E .  Kochin, I. A. Kibel, and N. V. Roze, Theoretical 

Hydrodynamics [in Russian], Fizmatgiz, 1963. 
3, L. D, Landau and E, M. Lifshitz, Continuum Mechanics 

[in Russian], Izd-vo "Nauka, " 1962. 

F = =a~ sin~ r162162 5 May 1965 Novosfbirsk 


