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THE LIFTING FORCE ACTION ON A CONTOUR IN A PLANE HOMOGENEOUS VORTEX FLOW OF AN

INCOMPRESSIBLE IDEAL FLUID
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ABSTRACT: The plane problem of homogeneous vortex flows of an
incompressible inviscid fluid around a contour is considéred. A
method is developed for contours having a center or an axis of sym-
metry for calculating the lifting force acting on the contour which
reduces the problem of determining the lifting force to an ordinary
problem of a potential flow of a fluid around the given contour.

A fixed contour is placed in a plane, infinite, homogeneous,
vortex flow of an incompressible, inviscid fluid (Fig. 1). As shown
by the solution for the problem of a circle {1]. in this case, unlike
potential flows around a contour, a lifting force proportional to the
vortex is set up.

The problem of determining hftmg forces is solved below for a
certain class of contours.

In a Cartesian coordinate system, the velocity of g fluid at
infinity is

w =g i wy, ve=40  when r-—cw (r= Ve i 5. ()

Here u, v are projections of the velocity vector on the x, y axes,
respectively; uw is the velocity at infinityas x — <, y = 0, Accord-
ing to the Helmholtz theorem [2], in this case, the vorticity will be
constant over the entire flow region and equal to —w.

Thus, flow around a contour is described by the equations with
boundary conditions (1) at infinity and the condition on the contour
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with boundary conditions (1) at infinity and the condition on the
contour
w, T weos (n, z) 1 oesin (v, 7) = 0. (3

tere n is the direction of the outward normal from the contour
and wy, is the normal component of the velocity along the contour.

In order to calculate the forces acting on the contour, it is suf-
ficient to know the asymptotic behavior of the velocity and the pres-
sure in the vicinity of an infinitely remote point.

We shall seek the solution of system (2) in the form

1

o= Ay -l oy, roa= V-l e, “
In this case, U and V satisfy the equations
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dr 01/ =0, dr = oy 0. (5)

and the boundary conditions

{ cos (n, ) - Vsin(n, z) = 0on L.

U= g, "= 1 at oo~ (8)
The functions u,, v; satisfy the same equations (5) and the
boundary conditions

wycos (n, x) ey Sin (0 T) 7 — yo cus (i, r) on I

wp= U, rp =0 at oa. (N

Afrer solving (0) with the corresponding boundary conditions (8}
and (7) and substituting the solutions in (4), we obtain the solution of
system (2) with conditions (1) and (3).

System {5) with conditions {6) describes the potentxal of a uniform
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flow around the given contour with velocity ue at infinity. In com-
plex variables the total conjugate velocity of such a flow in the vicin-
ity of an infinitely remote point without circulation is represented by
the expansion

woes gy, Ay F Ay B,

(k= 2.3, 4, ...} 8}

System (5) with conditions (7) also describes a certain potential
flow with zero velocity at infinity. The solution will be of the form

(A, = Ay -1 A"

wy = By 2o By [ (By = B B/ (9

The complex-conjugate velocity of the total flow will be
FRR R ANV AL

wy = w oy -
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Fig. 1

Since wg =y — ivpand z = re!?, we obrain the following expan-
sion in the vicinity of an infinitely remote point:
s cos2p -1 Co” sin 2 :
uoc gy A orsing - — _,_(p_.r.! e 5i1-Q ) <_l_> ,
Cy sin 2y — Cy" cos 2 1
PR R Mg ? +0(—3—) an

r: v

The pressure is determined from the Euler equations.
coordinates
8 2C5'pw 2 ] 1
St 12 8in% ¢ — £ p [2cos?2¢p —3cosq] -+ O (W)’

or re

In polar

30" 1
——’;L (2sin*g — 1]+ 0 (55}, (12)

Imegratmg these equations with p = pg at infinity, we obtain

3 {cos @ — cos® @] +

v

Co'2pw
r

sin® @ 4

C"pw
P = po Lf

[2cos®p —3cos ] -0 (;1—,-)‘(13)

We also compute vv,, where v, = cos¢ + vsing is the radial
velocity,

© [ Cysinlg 'Ca” ¢os 4@ 1
w= T T J+0('r7>. (11

The momentum equation for the region bounded by the given

contour and a circle of arbitrary radius R is of the form
2% 2n
\pv,de@—{—SPﬁsintpdtp—}—F:O (1%)
v 0

where F is the force acting on the contour in the direction of the

y. axis, that is, the lifting force. Substituting (13) and (1) here,

then integrating, we obtain

F = 210, po . (18)

It follows from the last relationship that the lifting force does
not depend on Cp", or, consequently, on A," or By”, that is, on the
imaginary parts of the coefficients A, and By in expansions (&) and

9.
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Thus, calculating the lifting force is reduced to determining the
real parts of coefficients Ay and By.
The quantity A, can be found if we know the ordinary flow around
a contour which is uniform at’infinity. In particular, if we know the
conformal mapping of the exterior of a circle of radius R onto the ex-
terior of the given comour z = f(£), then

Ag = klyu, — KR an

Here k, k, are the coefficients of the Laurent expansion of the
function

. ; k,
G - S 18)

As was pointed out previously, the value of By’ can also be de-
termined if we know the solution of system (5) with conditions (7).

We shall show that with proper choice of the position of the co-
ordinate system relative to the contour; or more precisely, the posi-
tion of the x axis which corresponds to choice of a certain value of
the velocity at infinity, we can ensure that the magnitude of the
coefficient By’ vanish in expansion {9). Then the problem of de~
termining the lifting force is reduced to the thoroughly studied prob-
lem of a potential flow around a contour,

Indeed, translating the x axis the distance a is equivalent to

changing ue by the amount aw and replacing the boundary condi~
tions (7) by

Fig. 2

uy cos (n, z) + », sin (n, z) =

= — yw cos (n, ¥) — aw cos (n, z). (19)

Then, uy and v; of (7) can be represented in the form of a sum
uy = wy* o ou*¥, == e et
where uy* and v,* satisfy equations (5) and conditions (7), while uy**
and vy** satisfy the same equations and the following boundary con-
ditions:
w** cos (n, 2) + o** sin (n, z) =
= — aw €08 (r, 7) 0N Luy** = U, 7y** =2 0 at oo. (20)

. Consequently, u,* and v{* constitute a solution of (5) and (7) in
the "old coordinates, " while u;** and vy**, as can be readily seen,
describe a flow which is a superposition of a homogeneous flow of a
fluid with velocities u = aw, v = 0 and potential flow around the given

contour of a fluid with the velocity u = —aw at.infinity. In other
words, for the velocity complex-conjugate to wy" " = uy™" v ivy**, we
can write
ok s R R = D DB
(Dk = Dk’ + ipkll)'
where, according to (17),
Dy = kkyaw -~ KR%0. (°1)

Thus. Dy, D', Dy" are proportional to the quaptity a. By
proper choice of a, we can achieve the equality By’ = D,'. Then,
in the new coordinate system, the real part of the coefficiémv By will
be equal to zero and, consequently, Cy' &y, that is, in order to
calcularte the lifting force, it will be sufficient to know the ordinary
flow around the contour and substitute the value of the velocity cor-
responding to the chosen axis into (16) instead of Ug.

In this case, it is easy to obtain a second expression for the
lifting force. The quantity A,' [3] is expressed by the area under
the contour aud the apparent additional mass corresponding to the
direction of the velocity at infinity ’

A= g (2 4 50) (22

Here m is the apparent additional mass, Sy is the area under the
contour. Then, we shall have for the 11ft1ng force

F = (m+ pSpouy (23)

It is necessary to emphasize again that the unknown ue in the
last relationship depends on a. In the general case, a is determined
from the solution of problem (5)-and (7).

However, we can point out.two classes of contours for which it is
not difficult to select the. position of the x axis.

In the first place, these are contours which do not possess axial
symmetry, being arranged so that the velocity of whirling flow at
infinity is parallel to the axis of symmetry. In this case, the x axis
should coincide with the axis of symmetry. We shall show this. It
follows from the boundary conditions (7) in this case that the follow-
ing should be true at the conjugate points of the region, that is, when

=1 exp (xig):

.ul, — _ul”v 1.11 = ”1“ i . 2hH
Since By cos 2¢ + By sin Zq) 1y
Cup == 72 + (-—r—a‘)

By sin 2¢ — B," cos 2q> 1 (25)
- = o),

By' should be equal to zero in order to sansfy (24).

In the second place, these are contours which possess symmetry
relative to a point (central symmetry). _In the case of such contouss,
we must have the axis pass through the center of symmetry. In this
case. the boundary conditions (7) are such that we should have

() = — 7y (=) D)

However, on the other hand,

By By

wg) =5+t
_ B B B
w,(_z)=—z§;— = _T‘j_ 27

It is clear from comparing (27) and (26) that all By with even sub-
scripts should be zero. Thus, in the given case, not only By', but By,
is equal to zero.

Now, we shall present an example of calculation of the 11ftm«v
force, An ellipse with semiaxes a, b(a > b) is placed in a uniformly
whirling flow at an angle of attack o (Fig. 2). Since the ellipse pos-
sesses central symmetry, the x-axis passes through its center,

The complex potential  of the potential flow around the ellipse
with velocity ue is of the form [2]

1 _ S .
O =—jl(az—b VE =) u+i(bz—a Vii—cl)v]e®.
Here

(4 = uy, cosa, v = u sine; = a® — b?).

Since in the vicinity of an infinitely distant point

2

?;-}n..‘

]/z’——-o“:z-—-

in this same neighborhood

d)ze—i“]-(u—-iv)z-}— a;—b (bu + iav)—i-—l-...].

Hence

4, = — Yo la —b) (bu+ iav)e ®h.

On sepafatfng the real part, we obtain

Al =ug(a+ b) [bcosta + asin®a].
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The lifting force is equal to
F =g (a -+ b) [b cos?a + asin?al .
Setting a = b =R in the last expression, we have
i F =2nR%u0u,,
This coincides [1] with the known expression for the lifting force for a
circle.

Ifwesetb=0, 0= a=a/2, wehave

= ma? sin?
F = qa? sin? apou, |

that is, the plate at an angle of attack has a lifting force; this force
reaches a maximum at o = 7/2 when the plate is perpendicular to the
flow. This force is of the same origin as the suction force in the or-
dinary case of a profile with sharp leading and trailing edges.
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